State-of-the-Art Word Reordering Approaches in Statistical Machine Translation: A Survey
نویسندگان
چکیده
This paper surveys several state-of-the-art reordering techniques employed in Statistical Machine Translation systems. Reordering is understood as the word-order redistribution of the translated words. In original SMT systems, this different order is only modeled within the limits of translation units. Relying only in the reordering provided by translation units may not be good enough in most language pairs, which might require longer reorderings. Therefore, additional techniques may be deployed to face the reordering challenge. The Statistical Machine Translation community has been very active recently in developing reordering techniques. This paper gives a brief survey and classification of several well-known reordering approaches. key words: Word Reordering, Statistical Machine Translation
منابع مشابه
To Swap or Not to Swap? Exploiting Dependency Word Pairs for Reordering in Statistical Machine Translation
Reordering poses a major challenge in machine translation (MT) between two languages with significant differences in word order. In this paper, we present a novel reordering approach utilizing sparse features based on dependency word pairs. Each instance of these features captures whether two words, which are related by a dependency link in the source sentence dependency parse tree, follow the ...
متن کاملPOS-based Reordering Models for Statistical Machine Translation
We present a novel word reordering model for phrase-based statistical machine translation suited to cope with long-span word movements. In particular, reordering of nouns, verbs and adjectives is modeled by taking into account target-to-source word alignments and the distances between source as well as target words. The proposed model was applied as a set of additional feature functions to re-s...
متن کاملDiscriminative Reordering Models for Statistical Machine Translation
We present discriminative reordering models for phrase-based statistical machine translation. The models are trained using the maximum entropy principle. We use several types of features: based on words, based on word classes, based on the local context. We evaluate the overall performance of the reordering models as well as the contribution of the individual feature types on a word-aligned cor...
متن کاملImproving Arabic-to-English Statistical Machine Translation by Reordering Post-Verbal Subjects for Alignment
We study the challenges raised by Arabic verb and subject detection and reordering in Statistical Machine Translation (SMT). We show that post-verbal subject (VS) constructions are hard to translate because they have highly ambiguous reordering patterns when translated to English. In addition, implementing reordering is difficult because the boundaries of VS constructions are hard to detect acc...
متن کاملA Hybrid Machine Translation System Based on a Monotone Decoder
In this paper, a hybrid Machine Translation (MT) system is proposed by combining the result of a rule-based machine translation (RBMT) system with a statistical approach. The RBMT uses a set of linguistic rules for translation, which leads to better translation results in terms of word ordering and syntactic structure. On the other hand, SMT works better in lexical choice. Therefore, in our sys...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEICE Transactions
دوره 92-D شماره
صفحات -
تاریخ انتشار 2009